Source code for easygraph.nn.convs.hypergraphs.hnhn_conv
import torch
import torch.nn as nn
from easygraph.classes import Hypergraph
[docs]class HNHNConv(nn.Module):
r"""The HNHN convolution layer proposed in `HNHN: Hypergraph Networks with Hyperedge Neurons <https://arxiv.org/pdf/2006.12278.pdf>`_ paper (ICML 2020).
Args:
``in_channels`` (``int``): :math:`C_{in}` is the number of input channels.
``out_channels`` (int): :math:`C_{out}` is the number of output channels.
``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``.
``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``.
``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``.
``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
bias: bool = True,
use_bn: bool = False,
drop_rate: float = 0.5,
is_last: bool = False,
):
super().__init__()
self.is_last = is_last
self.bn = nn.BatchNorm1d(out_channels) if use_bn else None
self.act = nn.ReLU(inplace=True)
self.drop = nn.Dropout(drop_rate)
self.theta_v2e = nn.Linear(in_channels, out_channels, bias=bias)
self.theta_e2v = nn.Linear(out_channels, out_channels, bias=bias)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor:
r"""The forward function.
Args:
X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`.
hg (``dhg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices.
"""
# v -> e
X = self.theta_v2e(X)
if self.bn is not None:
X = self.bn(X)
Y = self.act(hg.v2e(X, aggr="mean"))
# e -> v
Y = self.theta_e2v(Y)
X = hg.e2v(Y, aggr="mean")
if not self.is_last:
X = self.drop(self.act(X))
return X