easygraph.nn.convs.hypergraphs package

Submodules

easygraph.nn.convs.hypergraphs.dhcf_conv module

class easygraph.nn.convs.hypergraphs.dhcf_conv.JHConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The Jump Hypergraph Convolution layer proposed in Dual Channel Hypergraph Collaborative Filtering paper (KDD 2020).

Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} + \mathbf{X} \right).\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((N, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(N\) vertices.

training: bool

easygraph.nn.convs.hypergraphs.hgnn_conv module

class easygraph.nn.convs.hypergraphs.hgnn_conv.HGNNConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The HGNN convolution layer proposed in Hypergraph Neural Networks paper (AAAI 2019). Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} \right).\]

where \(\mathbf{X}\) is the input vertex feature matrix, \(\mathbf{H}\) is the hypergraph incidence matrix, \(\mathbf{W}_e\) is a diagonal hyperedge weight matrix, \(\mathbf{D}_v\) is a diagonal vertex degree matrix, \(\mathbf{D}_e\) is a diagonal hyperedge degree matrix, \(\mathbf{\Theta}\) is the learnable parameters.

Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((N, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(N\) vertices.

training: bool

easygraph.nn.convs.hypergraphs.hgnnp_conv module

class easygraph.nn.convs.hypergraphs.hgnnp_conv.HGNNPConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The HGNN + convolution layer proposed in HGNN+: General Hypergraph Neural Networks paper (IEEE T-PAMI 2022).

Sparse Format:

\[\begin{split}\left\{ \begin{aligned} m_{\beta}^{t} &=\sum_{\alpha \in \mathcal{N}_{v}(\beta)} M_{v}^{t}\left(x_{\alpha}^{t}\right) \\ y_{\beta}^{t} &=U_{e}^{t}\left(w_{\beta}, m_{\beta}^{t}\right) \\ m_{\alpha}^{t+1} &=\sum_{\beta \in \mathcal{N}_{e}(\alpha)} M_{e}^{t}\left(x_{\alpha}^{t}, y_{\beta}^{t}\right) \\ x_{\alpha}^{t+1} &=U_{v}^{t}\left(x_{\alpha}^{t}, m_{\alpha}^{t+1}\right) \\ \end{aligned} \right.\end{split}\]

Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-1} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{X} \mathbf{\Theta} \right).\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool

easygraph.nn.convs.hypergraphs.hnhn_conv module

class easygraph.nn.convs.hypergraphs.hnhn_conv.HNHNConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The HNHN convolution layer proposed in HNHN: Hypergraph Networks with Hyperedge Neurons paper (ICML 2020).

Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool

easygraph.nn.convs.hypergraphs.hypergcn_conv module

class easygraph.nn.convs.hypergraphs.hypergcn_conv.HyperGCNConv(in_channels: int, out_channels: int, use_mediator: bool = False, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The HyperGCN convolution layer proposed in HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs paper (NeurIPS 2019).

Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • use_mediator (str) – Whether to use mediator to transform the hyperedges to edges in the graph. Defaults to False.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg[, cached_g])

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph, cached_g: Optional[Graph] = None) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((N, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(N\) vertices.

  • cached_g (dhg.Graph) – The pre-transformed graph structure from the hypergraph structure that contains \(N\) vertices. If not provided, the graph structure will be transformed for each forward time. Defaults to None.

training: bool

easygraph.nn.convs.hypergraphs.unignn_conv module

class easygraph.nn.convs.hypergraphs.unignn_conv.UniGATConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, atten_neg_slope: float = 0.2, is_last: bool = False)[source]

Bases: Module

The UniGAT convolution layer proposed in UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks paper (IJCAI 2021).

Sparse Format:

\[\begin{split}\left\{ \begin{aligned} \alpha_{i e} &=\sigma\left(a^{T}\left[W h_{\{i\}} ; W h_{e}\right]\right) \\ \tilde{\alpha}_{i e} &=\frac{\exp \left(\alpha_{i e}\right)}{\sum_{e^{\prime} \in \tilde{E}_{i}} \exp \left(\alpha_{i e^{\prime}}\right)} \\ \tilde{x}_{i} &=\sum_{e \in \tilde{E}_{i}} \tilde{\alpha}_{i e} W h_{e} \end{aligned} \right. .\end{split}\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – The dropout probability. If dropout <= 0, the layer will not drop values. Defaults to 0.5.

  • atten_neg_slope (float) – Hyper-parameter of the LeakyReLU activation of edge attention. Defaults to 0.2.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool
class easygraph.nn.convs.hypergraphs.unignn_conv.UniGCNConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The UniGCN convolution layer proposed in UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks paper (IJCAI 2021).

Sparse Format:

\[\begin{split}\left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= \frac{1}{\sqrt{d_{i}}} \sum_{e \in \tilde{E}_{i}} \frac{1}{\sqrt{\tilde{d}_{e}}} W h_{e} \end{aligned} \right. .\end{split}\]

where \(\tilde{d}_{e} = \frac{1}{|e|} \sum_{i \in e} d_{i}\).

Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \tilde{\mathbf{D}}_e^{-\frac{1}{2}} \cdot \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{X} \mathbf{\Theta} \right) .\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool
class easygraph.nn.convs.hypergraphs.unignn_conv.UniGINConv(in_channels: int, out_channels: int, eps: float = 0.0, train_eps: bool = False, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The UniGIN convolution layer proposed in UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks paper (IJCAI 2021).

Sparse Format:

\[\begin{split}\left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= W\left((1+\varepsilon) x_{i}+\sum_{e \in E_{i}} h_{e}\right) \end{aligned} \right. .\end{split}\]

Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \left( \left( \mathbf{I} + \varepsilon \right) + \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \right) \mathbf{X} \mathbf{\Theta} \right) .\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • eps (float) – \(\varepsilon\) is the learnable parameter. Defaults to 0.0.

  • train_eps (bool) – If set to True, the layer will learn the \(\varepsilon\) parameter. Defaults to False.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool
class easygraph.nn.convs.hypergraphs.unignn_conv.UniSAGEConv(in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False)[source]

Bases: Module

The UniSAGE convolution layer proposed in UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks paper (IJCAI 2021).

Sparse Format:

\[\begin{split}\left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= W\left(x_{i}+\text { AGGREGATE }\left(\left\{x_{j}\right\}_{j \in \mathcal{N}_{i}}\right)\right) \end{aligned} \right. .\end{split}\]

Matrix Format:

\[\mathbf{X}^{\prime} = \sigma \left( \left( \mathbf{I} + \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \right) \mathbf{X} \mathbf{\Theta} \right) .\]
Parameters
  • in_channels (int) – \(C_{in}\) is the number of input channels.

  • out_channels (int) – \(C_{out}\) is the number of output channels.

  • bias (bool) – If set to False, the layer will not learn the bias parameter. Defaults to True.

  • use_bn (bool) – If set to True, the layer will use batch normalization. Defaults to False.

  • drop_rate (float) – If set to a positive number, the layer will use dropout. Defaults to 0.5.

  • is_last (bool) – If set to True, the layer will not apply the final activation and dropout functions. Defaults to False.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(X, hg)

The forward function.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(X: Tensor, hg: Hypergraph) Tensor[source]

The forward function.

Parameters
  • X (torch.Tensor) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).

  • hg (dhg.Hypergraph) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.

training: bool

Module contents